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13, ABSTRACT (Mucsmum 200 wovay

~>;This report contains the results of supplementary work done related to the reliability
analysis of Application Specific Very Large Scale Integrated (ASIC VLSI) CMOS
circuits. The major work is currently being carried out under Task N-9-5716. The
mein goal of both tasks is to determine the electromigration susceptibility of VLSI
circuits. Electromigration is a major reliability problem caused by the transport
of atoms in a metal line due to the electron flow. Under persistent current stress,
electromigration can cause deformations of the metal lines «hich may result in
shorts or open circuits. The failure rate due to electromigration depends on the
current density in the metal lines and is usually expressed as a median-time-to-

failure (MIF). D

- This work focuses on the electromigretion problem in the power and ground busses.
To estimate the bus MIF, an estimata of the current waveform in each branch of the
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\\ 13. ABSTRACT (Continued).

bus is required. In general, the MIF is| dependent on the shape of the current
wvaveform, and not simply on its time-avefage. However, a very large number of
such waveform shapes are possible, depenfiing on what inputs are applied to the
circuit. This is especially true for S circuits, which draw current only
during switching.™ The correct current waveform to be used for MTF estimation

is one that combines (in some scnse) the effects of all possible logic waveforms.
Considering the set of logic waveforms allowed at the circuit inputs as a proba-
bility space, the curkent in any branch of the bus becomes a stochastic process.
The expected current waveform is then the mean waveform (nor a time-average) of
this process. Tnis isla waveform whose value at a given time is the weighted
average of all possibld current values at that time. The resulting methodclogy
is called a probabilistic simulation of the circuit.

In this task it was proven that the MIF estimate not only depends on the expected
current waveform, but 21so on the current variance waveform, especially in regions
where the current density is high. The relationship between the MTF and the ex-
pected and variance current waveforms in the bus has been established. A lescrip-

tion of how an estimate of the variance current waveform is derived at the tferminals

of CMOS gates 1is presented and an explanation of the approach uged to estimate the

variance current waveform anywhere within a bus given the variance current waveforms

at the contacts to th% bus. Implementation issues and results are also presented.
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EVALUATION

This technical report describes a technique for including the current variance
waveform in the calculation for the median-time-to-failure (MTF) for metal power
and ground busses due to clectromigration in VLSI integrated circuits. Previously
described work details the use of probabilistic simulations in determining the
expected current waveforms in the branches of the busses. This work establishes
the relationship between the MTF and the expected and variance waveforms in the
bus. Several examples are presented which compares the current waveforms
obtained by using SPICE sirulations and waveforms obtained using probabilistic
simulation with and without the variance contribution. The main advantage of this
approach is the ability to handle large circuits by replacing an ¢xponential number
of deterministic simulation runs with a single probabilistic simulation run.
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1. Introduction

Under this task, we performed supplementary work related to the reliability analysis of
Application Specific Very Large Scale integrated (ASIC VLSI) CMOS circuits. The major
work is currently being carricd out under Task N-9-5716. The main goal of both tasks is to
determine the electromigration susceptibility of VLSI circuits. Electromigration is a major
tcliability problem caused by the transport of atoms in a metal line due to the electron flow.
Under persistent current stress, clectromigration can cause deformations of the metal lines
which may result in shorts or open circuits. The failure rate due to clectromigration depends
on the current densily in the metal lines and is usually expressed as a median-time-to-failure
(MTF).

In this work we focus our attention on the clectromigration problem in the power and
ground busses. To estimate the bus MTF, an estimate of the current waveform in each branch
of the bus is required. In general, the MTF is dependent on the shape of the current waveform,
and not simply on its time-average. However, a very large number of such waveform shapes
are possible, depending on what inputs are applied to the circuit. This is especially true for
CMOS circuits, which draw current only during switching. The correct current waveform to
be used for MTF estimation is one that combines (in some sense) the effects of all possible
logic input waveforms. If we consider the set of logic waveforms allowed at the circuit inputs
as a probability space, the current in any branch of the bus becomes a stochastic process. The
cxpecled current waveform is then the mean waveform (not a time-average) of this process.
This is a waveform whose value at a given time is the weighted average of all possible current
values at that time. The resulting methodology is what we call a probabilistic simulation

of the circuit. We have implemented this approach in CREST [1} which uses statistical

information about the inputs to directly derive the expected current waveforms.




In this task, we have established that the MTF estimate not only depends on the expected
current waveform, but also on the current variance waveform, especially in regions where the
current density is high. This report presents our findings and is organized as follows. In the
next section, we establish the relationship between the MTF and the expected and variance
current waveforms in the bus. In Section 3, we describe how an estimate of the variance
current waveform is derived at the terminals of CMOS gates. In Section 4, we explain the
approach to be used in cstimating the variance current waveform anywhere within a bus
given the variance current waveforms at the contacts to the bus. Implementation issues and

results are presented in Section 5.

2. Stochastic Current Waveforms and the MTF

Consider a metal line of uniform width and thickness carrying a constant current. The
relationship between the MTF, tgo, due to electromigration in the metal line and the current
density, 7, has been extensively studied, and shown to be a complex nonlinear function {2,
as shown in Fig. 1. We will consider the MTF to be 5 « 1/(7) where j isin A/cm?, and f
is a dimensionless nonlinear function, whose plot is shown in Fig. 2, which was derived from
Fig. 1.

If a metal line carries a varying current, of density j(t), then the MTF is tso o« 1/Je,
where Jor depends both on f and on the waveform shape of j(t). It has been suggested (3]
that, if the waveform is periodic with period T and consists of a train of pulses £ =1,...,m

of heights j;. and duration ¢, then :
m
11 PP
Jor = E 'QLTJ (Jk)- (])
k=1

For a general periodic waveform, we take the summation to the limit and write :

T
Tp=1 0/ 1(3)dt. (@)

If the current waveform is not periodic, then better estimates of Jr are obtained by using
larger values of T' so that more features of the waveform are included. Therefore one can

write @

T
Jor = Jim 7 [ s (3




Now suppose that the current waveform is stochastic, i.c., it is a stochastic process j(¢),
that represents a family of deterministic (real) current waveforms ji(t), with associated
probabilities Py, k=1,...,N, over the (finite) interval {0,4y). Based on this information, we
can build a (non-stochastic) current waveform j(t), over (0,1 as 7" — a¢, that is indicative of
the current, during Lypical operation as follows. Consider a random sequence of the waveforms
71(t), cach being shifted in time, spanning an interval of length g, and occurring with its
assigned probability Py, as shown in Fig. 3. Let ng(T) be the (integer) number of occurrences

of the waveform ji(t) in [0,7), and let np = [T'/ty). I Jy, k=1,..., N are defined as follows :

to
sl [re .
hE g 0/ TGk, (1)
then : ,
N N
.1 . . n (T . [ (1) c
Jor = Jim 0/ Si)it= i 3 720 3 Ji fim, [, (5)
By the law of large numbers (4], impp—oo [0 (T')/np] = Py, which leads to :
N, o N
1 . .
o= 32| [ il = (19 1Giopa Q
k=117 3 0 k=l
and, finally :
fo
1 7 - ”~
Ja=1 0/ B (i)t (")

where E[ ] denotes the expected value operator. This is an important result; it says that
the MTF due to a stochastic currenl depends only on the expected waveform of a nonlinear

function of the current.

Since f is nonlinear, E(f(j)] is not casy to evaluate. At low current values, where f is
linear (Fig. 2), £[f(j)] = f(£[j]). If this is substituted in (7) and compared with (2) it shows
that, when f is linear, the expected current waveform Efj] derived in [1] may itself be used as
the current waveform j(t) in (2) for MTT estimation. This establishes the importance of the
expected current waveform for electromigration failure analysis. In general, f is nonlinear,

and a generalized approach will be developed below.




At any time ¢, the process j(f) can be thought of as a random variable j with mean

n; £ E[j], and variance o3 2 E[(3-n;)?]. In general, the pt* moment of j is pt; 2 E[(3-1,)").

To estimate the mean of f(j), E[f(j)], we use a Taylor series expansion of f, which leads to :
: " (7} (») Iy,p
EUG) = S0y) 4 1)+ oo+ 1P 2. (s
It is evident that, when [ is linear, (8) reduces to:

B(f(3)) = f(ELD, (9)

as observed above. Hence using the expected current waveform as an actual current waveform
for MTF estimation based on (2) amounts to making a first-order approximation in (8).
Naturally, higher order approximations would lead to better results. In particular, if [ is
approximated by a quadratic in the neighborhood of 7;, then :
o2

E[f{)) = f(nj) + S (nj) - (10)
This second-order approximation becomes exact if f (7) is represented by the straight lines
corresponding to j! and j2 in Fig. 2. It is more accurate than (9) since it covers a wider range
of currents. As a resull, equations (10) and (7) offer a new, more accurate technique for
compuling the MTF. In order to make use of this technique, we need to derive the variance of
the current waveform in addition to its expected value. As pointed out in the introduction,
the estimation of the expected current waveform has already been described in our previous

work {1]; the next section will discuss the derivation of the variance.

3. Derivation of the Gate Variance Waveforms

Figurc 4 shows a generic CMOS gate structure which we will use in our derivation. The
variance waveforms for the gate total and output currents will be modeied by triangular
pulses V{i;p(2)] and V[i(t)], respectively, with peak values of V[I;5;] and V{[I). If an event
occurs at the gate input at time ¢, then we denote by t- and ¢* the instances of time
immediately before and after the event, respectively. Focusing for now on the output current

pulse, its variance waveform starts with a peak of V[I] = V{[i(¢+)] at time { and decays lincarly

4

N Ly Py




to zero at time ¢+ 7. Since VI = E[/?] - E[I)? [4), and since CREST already derives the
expected pulse peak (E[/]), we will concentrate here on the derivation of £[/2].

Let iy = iy + fp2 and iy = iy + 4. ILis casy Lo verify that iy = ip x Cu/(Cp + C)s
and iy = in x Cp/(Cp -+ Cu). Therelore :

e
, G il
BI#(0) = Bl (m—c-) + 20N
The term containing B(ip(t)in(t)] is omitted (it is zero) since al least one of the charging
currents is zero at any given time. In particular, the value at the peak is :

)= B () -+ BURO ¢ ()

n

The values of E[J3] and E(I?) are derived as follows. For E{J3], consider the p-part of
the gate, and let every transistor T} be represented by a switch of on-conductance gon k 5).
Based on this switch-network model of the p-block, let Gp(t) be the random conductance
between the output node and V. Gp is 2 function of the individual transistor random
conductances g, where gy, is 0 if the transistor is off and g,,, i if it is on. If an event occurs
at the gate at time ¢, then the value of Gp(tt) and the previous state of the output node,
Vo(t=), will determine J,. Formally, we have B[F] = E[(Vig = Vo(t=))? x G3(tT)], which
becomes :

E13) = Vjy % E[G3(t*) | Gp(t™) = 0] x P(Gy(t") = 0)

where P(A) is the probability of the event A, and E[A | B] denotes the conditional ezpected
value [4) of 4 given B. The formula is correct because if Gy((~) = 0 (# 0) then V(=) =10
(Vi) Sinzilarly for the n-part of the gate, we get :

E(I2] =V x B[G3(t+) | Gu(t~) = 0] x P(Gu(t™) = 0)

To derive the conditional expectations, consider a graph representaiion of the p-block
(or n-block), where every cdge in the graph is labeled with Efgf(t*) | Gp(t) = 0},
E[g(t1) | Gp(t=) =0}, and the gate node probabilities of its corresponding Lransistors.

The details of how these quantities can be derived for every transistor can be found in [3].




Then perform a graph reduction eperation, which, simply stated, involves a number of se-
ries/parallel combinations and node eliminations that reduce the graph to a single edge,
whose labels are the required statistics E[G3(t+) | Gp(t=) = 0] and E[Gu(t*) | Gp(t-) = 0].
Similarly for the n-block.

Having found the peak V{I) = E{?] - E[I)? for the outpul current, the time span =
will be found by first solving for the arca under the V[i(t)] pulse. Notice ihat, if i(t) is a

triangular pulse of height I and arca ¢, then :

© _g
/0 H*()dl = 3Iq

In this case, q is equal to the charge delivered to (or from) the output node capacitors. From

this it follows that :

/ " ()t = 2 E(1q), and Ji " Bl de = 2Bl

The sceond equation follows since E[i(t)] is a triangular pulse of height E{J] and area Elg].

Therefore, the variance pulse has an area :

.‘t’”%‘l = :' Vi(t)dt = %(’E[Ml - E[}Elg]).

The value of E{/q] can be writien as :

E[I‘I] = E((Ipl + 1) x (‘)pl + (lul)]'

where Iy (I1) is the peak of i,;(1) (i,1(2)), and p1 (gu) is the charge delivered Ly (1)
(in1{t}). When the p-block is conducting, the n-block is not conduting, and ip, (4)#0, 10, (L)
=0, gp, = ¥guCh, and gn, =0; while when the n-block ic conducting, the p-black is not, and
iny (L)£0, ip,(t) = 0, g, = VyCp, and gp, = 0. It follows then that:

ViaCa
C' +

9
":M Cp

E“Q} 1 _! CW

A Bl + e Bl

The time span of the gate oulput current variance pulse is, therefore :

ret (Ellql Vﬁlmc[vl)

6




If {16¢(2) is vae total gate current, then :

© 2
/0 VliodJdt = ﬁ'(EUcot‘I(o:] = E{liot) Elar])

Unfortunately, E{liot10r) dues not have a simple expression as was found for E{Jq] abova, \We
have chusen Lo use a conservative estimate based en tie following asswimption . whenever
a node in the p-block (n-block) is charged to ¥y (Va,), then every other node in the p-
block (n-block) is also charged to Vi (Vis). This assumption is true for simple gates, and
overestimales the current charge product in more complex cases, Based on this assumptios:,

one can show [5] that :

E[(],,.p;g] @pCh E[II’] + E[‘Iﬂ.lol] QﬂCpE[]"]
E[q" l '}’ + 6'7‘ E [qu] C"}l + C"n !

where Egp] and E{gn] are available as equations (9) & (10) in (6], £{gp ot} and Egn,01] are,

E[Tro1qt0t) =

respectively, the first and second summations in equation (7) in (6], and
Q= 3, VaCims Qu= Y, VuC,.
ieP block €N block

As was assumed for the expected current pulse {5, 6. we let the time span of the gate

total current variance pulse ba equal to that derived for the gate output current, therefore :

Vi = (o= et v

4. Estimasing the Variance Current Waveforms in the Bus

Since the current density j(t) in any branch of the power or ground bus is directly
proportional to the current i(t) in that branch, then, to simplify the presentation, we will
discuss the derivation of o7 rather than o2. The variance of the current waveform is a time
function ¢2(¢t) which we will refer to as tllc variance waveform. Furthermore, we will discuss

the power bus only since the ground bus analysis is similar.

The current in a branch of the bus, i(t), is a function of the currents being drawn off the
bus contacts, ij(t),j = 1,...,n. Each of these is, in-turn, simply the sum of the individual

gate currents tied to cach contact :

3(2) = ipn(2) + -+ + ip(t). (11)
7




Thus, in vhe framework of our probabilistic simulation technique, the process of deriving the
variance waveforms consists of three steps :

-1- Using the statistics of the signals at the inputs to each logic gate, derive the variance

waveform for its cucrent.,

2. Combine these variance waveforms at each contact puint to derive the variances of the

contact currents.

-3- Using the bus topology, and the variances of the contact eurrents, derive the variances

of the bus branch currents.
Step 1 has been described in Section 3 above. The other two steps will be described below.

‘The critical issue is the correlation between the different current waveforms. Since such
corrclation is tao expensive to derive for VLSI cirenits, we will occasionally be making con-
servative approximations to simplify the problem. Our experience with the probabilistic
simulation approach suggests that neglecting the correlativn between different current wave-
forms gives good results in most cases.

Based on this premise, we assume that the gate currents tied to the same contact are
uncorrelated. ‘This immediately provides a simple solution for step 2, using (11), as follows :

a%(l):a;-'z‘(l)-i‘-n—i-a}';k(t). {12)

The remainder of this section will be devoted to the mare difficult task of solving step 3, i.c.,

deriving the bus current variance waveforms from those of the contact currents.

The metal bus can be modeled as a multi-input multi-output, causal, lincar, time-
invariant, (LTI) system with causal inputs x; and outputs y;. The inpuls x4(t), j=1,....n
represent the contact currents, and carry the stochastic processes ij(t) of known variance
waveforms o‘}} (). The outputs yi(t), i =1,...,m represent the tus branch currents al which
the variance waveforms, o3,(L), are required. Let h,)(t) be the impulse response function

relating yi() to xj(2) :

7= Shy)ex(l),  i=lem (13)
j=1

where *+” denotes the convolulion operation.




It is well known (sec {4), page 209) that the variances of the system inputs are not enough
to derive the variances of its outputs. ‘The auto-correlation of cach input, Rz z (4, t2) 2
E[x3(41)x5(ta)}, is also required. Since the input processes are not wide-sense stationary 4],
an exact analytical solution can be quite complex, even if the auto-correlation were knowri.
Therefore, as is often necessary, we will make certain simplifying assumptions about the

structure of R,m.

We will assume that the corrclation between xy(t) and x3(¢ + 7) goes to zero as T — oo
In terms of the auio-covariance, Ce;z,(t,4s) 2 Rz (G ta) = nz, (G )0z, (t2), this will be

formulated as :
ngx,(thl]) = 0'3,(!]), and Cx,g,.(lhlg) =0for |ty ~ta| 2T\ (14)

where 1" is a (Lypically small) time interval.

Consider the discrele time system obtained by sampling, with period T', the continuous
time system defined by (13). If x;(k] £ xy(kT) are the discrete processes at the inputs, and

yilk] £ yi(AT) are the discrete output processes, then :

vl = MM, i=l,m (15)
=1

where hfj)[k} is the discrete impulse response function relating yi(k] to xj[k]. As shown
below, the discretized output variance waveforms can be derived irrespective of the shape
of Cz,z’ (L14ta) for |t} = ta} < T. The continuous variance waveforms can then be obtained
by interpolation. Strictly speaking, therefore, the sampling period T should be small : 1/T
should be larger than the largest frequency component of the inputs. However, since fine
waveform details are not of paramount importance in this work, we need only restrict T to

be small enough so that waveiorm features in so small an interval are inconsequential.

To simplify the notation, define yy[k] = hgn[k] o Xj(k}. Furthermore, as pointed out
abeve, we will neglect the correlation between the contact currents. Hence the x; inputs are

uncorrelated, and :

o[k = i;ai.j[k], i=1,...,m. (16)
J=

9




We have thus reduced the problem to analyzing a single-input single-output discrete L1
system :

() 4 () -

yulk] = &' {R) « xyfk] = ,?T-f)h” (k]xslk - &) (17)

Let %5(k) & xfk] - Nz, (k] and (k) £ yylk] - Ny, (k). Then af (k] = Elyylk)) and
yulk) = hg‘)[k] o %5{k), henee :

ACE .r:[( W (s lk - rc])a} = 3 W) io W ) B{Rylk = ) ylk = ] (1)

=0 =0 Ram

Furthermore, it is easy to see that E{Xy{ky|Ryfka]] = Cepz, (k1 ka), which, using (14), gives :

030 (&) = élhgj)[h‘,] 20;, (k=x]= Ihg’)[kl 2 03] (X). (19)

And, finally, the variance waveforms for the system outputis are, using (16) :
2 (= S EORE o2 1k : 3
ay;[ ]= Z' ] [L]I ‘O'z,[L]. 1i=1,...,m (20)
j=l

In other words, the variances of the system oulputs (bus branch currents) can be oblained
from the convolution of the variances of ils inpuls (coalact curreals) with the squares of ils
discrete impulse respoause functions. This discrete convolution can be easily performed once
the discrete impulse response functions arz found. Of course the summation need not be
taken to infinity, and may be convemently truncated after |hf;n[~]| is less than some small
value. To obtain the discrete impulse response functions, note that if a unit-step input
current is applicd at contact j, with all other contact currents held at zero, and if the

resulting outputs y;(¢) are monitored, then :
EDK) = y;(kT) - yi((k - 1)T) = T )d =1 21)
b (K] = y; = y;((k - )—/(k-l)T 1i(7)dr, i=1,...,m. (2

This suggests two methods for deriving hf;’)(k]. The first uses a simulation program such as
SPICE to simulate the bus with unit-step input currents applied at ecach contact (onc at a
time), while monitoring the bus branch currents. This gives the mn functions hf;“[k] using

(21). Another (approximate) method would be to make use of the second equality in (21) .

10




if the continuous impulse r.sponse functions are approximated using some RC time-constant

analysis of the bus, then the discrete impulse response functions can be obtained from them.

For very large chips, it may be prohibitively expensive to perform the required convolu-
tions. One can simplify the calculations by making an additional assumption as follows. If
the bus is known to be “fast”, i.e., if Izg')[k] dies down faster than changes in oF [k}, then
(19) reduces to :

UELACHY || (22)

So the convolutions in (20) can be replaced by simple multiplications, and the constants
”
?,olhgl)[rc]l can be derived in a pre-processing step from the impulse response functions

and stored in a single m x n constant matrix.

If the chip is too big to even derive hg.')[k], then one further simplification can be made
as follows. If Izg.‘)[k] dies down faster than changes in xj[k] then (17) reduces to yylk] =
x5{k) T=o hg) (#), and so :

o3, [k = o2, ()3 H ) .

P

(23)

The constants (T hg) [:c])2 can be very casily obtained as follows. Note that Te hg” (#)
is Lthe steady state current in branch { in response Lo a unit-step input current at contact j,
with all other contact currents held at zero. If the bus is modeled as a resistive network,
then the steady state node voltages in response to such inputs are the entries of the driving
point impedance matrix. So if the node-admittance matrix is built by simple inspection of
the bus and then inverted to produce the driving point impedance matrix, the steady state

currents are immediately available.

5. Implementation and Results

The variance calculation technique outlined above has been implemented in CREST. We
present below the results of CREST runs on a variety of circuits, showing both waveform

comparisons and timing performance.

We start out with a simple example, a 2-input CMOS NAND gate. The variance wave-

form comparison between CREST and SPICE is shown in Fig. 5. The SPICE waveform is
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derived by running SPICE on the NAND gate for all possible logical traasitions at its in-
puts, deriving the expected current waveform by doing a time- point o.eraging of the results,
and then using that to find the variance as the time-point average of (i - E[i})2. Since the
object of this research is to handle very large chips, and since elect, .aigration madels fur
ac waveforms are still controversial, it makes little sense to shoot for pe fect -ecuracy in the
current waveforms. It is more important to be able to derive in a very short time o . aceform

that matches the peak and general shape of the SPICE waveforin,

Another single-gate comparison is shown in Fig. 6 for a CMOS complex gate. The
comparisons for two larger cirenits are shown in Fig. 7 (fur an XOR circuit) and Fig. 8 (for
a §4-MOSFET 2-bit ripple adder cireuit).

Our final example is a much bigger and more complex ¢ircuit; it is a G4S-MOSFET 4-bit
parallel multiplier. This circuit is too big to make the 28 required SPICE simulations. \We
will, therefore, show two different CREST runs to demonstrate that the variance computation
works well even when the heuristics introduced for handling large circuits in [1] are used.
In Fig. 9 we compare a full accuracy CREST run and a heuristic CREST run in which
all internal nodes of the mulliplier were assumed independent. The excellent agreement
realfirms the conclusion made in (1) that as a circuit becomes larger, the correlation between

its internal nodes may be safely neglected.

We next examine the importance of the variance waveform for MTF estimation. The
expected and variance waveforms combine to provide a Jgp de current density value tu
represent the ac current waveform for MTT estimation as given in (7) and (10). Equation
(7) is first evaluated using only the first term of (10), i.c., using only the expected waveform,
to give Jyp. Equation (7) is evaluated again using both terms in (10), i.e., using buoth
expected and variance waveforms, to give Jym. The percentage contribution of the variance
waveform to J g is then measured as -J-'-“}:—"'l’f-ﬂl x 100. The results are tabulated in the fifth
column of Table 1 for a number of test examples. The results clearly establish the importance

of the variance waveform in addition to the expected waveform.

Finally, we illustrate the speed performance of CREST with the variance estimation
built in. Table 1 shows alse the spced comparisons between CREST and SPICE for all the

examples presented above. The speedup becomes much better for larger circuits (1529X for
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the adder and 11595X for the multiplier). In fact, the speedup should grow exponentially,
because an exponential number of deterministic simulation runs are replaced by a single
probabilistic simulation sun. We point out the case of the multiplier circuit (the largest
circuit in the table) with the heuristic CREST run (last row in Table 1); considering the
excellent waveform comparison in Fig. 9 along with the dramatic speedap of 11593X in

Table 1, this establishes the feasibility of solving large VLSI chips.

Table 1. Execution time comparisons. Time is
in CPU scconds on a VAX-11/780; size refers to
the number of transistors.

Variance
Circuit Size SPICE | CREST | Contribution | Speedup
Nand 4 41.75 0.90 110% 46X
Complex 6 244.15 1.09 185% 224X
Xor 16 456.00 3.13 236% 146X
Adder 54 32620.42 21.33 107% 1529X
Multiplier 648 | 697530.88* | 1871.99 219% 373X
Multiplier 648 | 697530.88° 60.16t 200% 11595X

*Estimated (2% times the cost of a typical logical SPICE run).
tieuristic CREST run, all others ace full accuracy CREST.

6. Summary and Conclusions

We have discussed the probiem of estimating the median time-to-failure (MTF) duc to
clectromigration in the power and ground busses of CMOS VLSI circuits. In this task we
have verified that including the variance waveform of the current, in addition to the ezpected
waveform derived in {1], further improves the accuracy of MTF estimation. This was done by
showing that the variance contribution to the MTT estimate can be in the range of 100% to
200% relative to that of the expected current waveform. We have described a novel technique
for deriving the variance waveform, and its implementation in the probabilistic simulator
CREST. The results of several CREST runs have been presented, and they show good
waveform agreement with SPICE, as well as excellent speedups over traditional approaches

- a speedup of over 11000X was demonstrated on a 64S-transistor circuit.

This work proves that the expected and variance waveforms of the stochastic current

model are : (1) essential to derive an accurate MTF value, and (2) can be efficiently derived

13




using the probabilistic simulation approach. ‘The main advantage of this approach is the
ability to handle large circuits by replacing an exponential number of deterministic sinulation
runs with a single probabilistic simulation run. \Withoat such a technique, analyzing the

reliability of Jarge cireuits would seem to be an impossibility.
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